Heat and mass transfer effects on unsteady MHD flow of a chemically reacting fluid past an impulsively started vertical plate with radiation
نویسنده
چکیده
The objectives of the present study are to investigate thermal radiation of a viscous incompressible unsteady chemically reacting and hydromagnetic fluid flow past an impulsively started vertical plate with heat and mass transfer is analyzed. The fluid is a gray, absorbing-emitting but nonscattering medium and the Rosseland approximation is used to describe the radiative heat flux in the energy equation. The governing equations are solved using an implicit finite-difference scheme of Crank-Nicolson type. Numerical results for the transient velocity, the temperature, the concentration, the local as well as average skin-friction, the rate of heat and mass transfer are shown graphically. It is found that as small values of the Prandtl number and radiation parameter N, the velocity and temperature of the fluid increase sharply neat the cylinder as the time t increase, which is totally absent in the absence of radiation effects. It is observed that the presence of chemical reaction parameter K(>0) leads to decrease in the velocity field and concentration and rise in the thermal boundary thickness.
منابع مشابه
Effects of Thermal Diffusion and Radiation on Magnetohydrodynamic (MHD) Chemically Reacting Fluid Flow Past a Vertical Plate in a Slip Flow Regime
An analysis has been conceded to study the effects of Soret and thermal radiation effects on the magnetohydrodynamic convective flow of a viscous, incompressible, electrically conducting fluid with heat and mass transfer over a plate with time-dependent suction velocity in a slip flow regime in the presence of first-order chemical reaction. The slip conditions at the boundaries for the governin...
متن کاملCombined effect of hall current and chemical reaction on MHD flow through porous medium with heat generation past an impulsively started vertical plate with constant wall temperature and mass diffusion
Unsteady flow with magneto-hydrodynamics and heat generation through porous medium past an impulsively started vertical plate with constant wall temperature and mass diffusion is considered here. The effect studied is a combination of Hall current and chemical reaction. The motivation behind this study is the applications of such kind of problems in industry. In many industrial applications ele...
متن کاملEffects of thermal diffusion and chemical reaction on MHD transient free convection flow past a porous vertical plate with radiation, temperature gradient dependent heat source in slip flow regime
An analytical investigation is conducted to study the unsteady free convection heat and mass transfer flow through a non-homogeneous porous medium with variable permeability bounded by an infinite porous vertical plate in slip flow regime while taking into account the thermal radiation, chemical reaction, the Soret number, and temperature gradient dependent heat source. The flow is considered u...
متن کاملAnalytical and numerical investigation of heat and mass transfer effects on magnetohydrodynamic natural convective flow past a vertical porous plate
The aim of this investigation is to study the effect of hall current on an unsteady natural convective flow of a viscous, incompressible, electrically conducting optically thick radiating fluid past a vertical porous plate in the presence of a uniform transverse magnetic field. The Rosseland diffusion approximation is used to describe the radiative heat flux in the energy equation. Analytical a...
متن کاملChemically Reacting Hydromagnetic Unsteady Flow of a Radiating Fluid Past a Vertical Plate with Constant Heat Flux
The combined effects of thermal radiation absorption and magnetic field on an unsteady chemically reacting convective flow past an impulsively started vertical plate is studied in the presence of a constant wall heat flux. Boundary layer equations are derived and the resulting approximate nonlinear partial differential equations are solved numerically using a semi-discretization finite differen...
متن کامل